Интеллектуальные
Для выпускников
Осенние
Зимние
Весенние
Спортивные
День рождения
Разное
Педагогика
Образование
Воспитание
Преподавание
Психология
Методики
Астрономия
Биология
География
Иностранный язык
Информатика
История
Литература
Математика
Музыка
МХК и ИЗО
ОБЖ
Русский язык
Технология
Физика
Химия
Экология
Экономика
Сайта
Педагогика
Общество
Происшествия
Все сценарии
Все статьи
Все открытые уроки
« Ноябрь 2024 » | ||||||
---|---|---|---|---|---|---|
Пн | Вт | Ср | Чт | Пт | Сб | Вс |
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 |
Какие сценарии чаще добавлять? |
Математическое образование необходимо как часть общей культуры для всех учащихся, а поэтому изучение математики в колледже в группах, готовящих квалифицированных бухгалтеров, товароведов на базе основной школы с получением среднего образования и специальности, является необходимым. Уровень математического образования, обеспечиваемый введением новых программ, становится одним из важных элементов подготовки учащихся, к общественно полезной деятельности. Задача для преподавателя математики в колледже непростая: в кратчайший срок, за один год, в отведенное по учебному плану время, а это в пределах 180 часов изучить программный материал в объеме математики 10-11 классов. И не только изучить, но и вооружить мобильными, ровными знаниями, которые при переходе на дальнейшую ступень учебы будут сразу востребованы при изучении высшей математики в технологических и бухгалтерских группах.
Цель преподавания заключается в том, чтобы учащийся овладел математикой. Термин “овладел” очень растяжимый. Во-первых, учащийся должен нечто знать. Во-вторых, он должен на некоторую глубину понимать, т.е. под знанием подразумевается не только умение повторить формулировку, а мотивировать, почему так, а не иначе. В-третьих, учащийся должен уметь применять изученную им математику по профилю специальности.
Для достижения этих целей необходимо изучать теорию и решать задачи. Решая задачи, применяем теорию и тем самым познаем ее. Изучать математику, не решая задач, совершенно бесполезно. В этом вряд ли кто-то сомневается, но многие неправильно понимают роль задач. Обучение математике нельзя разделить на теорию и решение задач. Невозможно без решения задач усвоить теорию. Цель не в том, чтобы ученик решил задачу (т.е. получил ответ), а в том чтобы получил от этой задачи пользу, т.е. продвинулся на одну ступеньку по длинной лестнице овладения математикой. Цель не в ответе, а в процессе решения. Решая задачи учащийся приобретает новые знания и навыки, развивает в себе настойчивость, приобщается к математическому творчеству.
Наиболее эффективно и результативно развитие математического творчества проявляется при составлении математических задач преподавателем и учащимися, где отражается систематическое применение материалов по специальности, элементов производственного процесса. Математическое творчество прослеживается на всех этапах составления задач по математике. Целесообразно давать учащимся задания на составление задач, связанных с той или другой специальностью, чтобы при их решении нужно было использовать изучаемый на уроках материал. Например, предлагаются для групп по специальности “товароведение” задачи на нахождение процентного содержания вещества, расчет наибольшего и наименьшего значения количества материала. Для групп по специальности “экономика и бухгалтерский учет” предлагаются задачи на определение величины дохода и возвращаемого займа, расчет прибыли, общей суммы дохода предприятия и т. д. После решения подобных задач учащиеся более подробно узнают об особенностях и значимости выбранной профессии, о трудностях в работе, об оплате.
Основным исходным положением, затрагивающим профессиональную направленность курса математики, является прикладная значимость знаний в практической деятельности. Прикладная направленность математических знаний означает осуществление реализации профессиональной подготовки. К основным направлениям этой работы в процессе обучения математике можно отнести следующие:
Каждая решаемая задача имеет методическую цель. Поэтому преподаватель должен стремиться не к тому, чтобы задача была решена быстро и безошибочно или только на развитие тренировки, а к тому, чтобы она была решена творчески и чтобы из нее выжить как можно больше пользы для математического развития ученика.
Под составлением задачи по математике надо понимать не простую репродукцию задачи из сборника или учебного пособия, а самостоятельную постановку и решение проблемы учащимися, которая в общем случае решается с помощью логических умозаключений, математических действий на основе законов и методов математики.
Понимание взаимосвязи решения и составления задач позволит преподавателю добиться повышения эффективности и результативности составления и решения задач.
Последовательность операций в процессе составления задач сводится к следующим:
Для составления и решения математических задач служат основой именно факты из практической деятельности человека для удовлетворения человеческих потребностей. Мировоззренческая направленность задачного подхода к математическому образованию требует:
Можно выделить следующие виды заданий на составление задач:
Предлагаемые учащимся преподавателем задания на составление по ситуациям в учебном материале:
В обучении и решении математических задач в среднем специальном заведении схемы “преподаватель-ученик”, “преподаватель-задача”, “ученик-задача” выступают в качестве составных взаимосвязанных и взаимообусловленных элементов современной концепции обучения математики: преподавания, учения и содержания изучаемого. Выделенные схемы включают в себя как прямые, так и обратные связи. Традиционное обучение решению математических задач в колледже предусматривает целенаправленное воздействие преподавателя на ученика непосредственно (“преподаватель-ученик”) или через задачу (“преподаватель–задача–ученик”). Составление математических задач позволяет осуществить эффективные и результативные обратные связи не только на уровне схемы, но и в рамках общей схемы “преподаватель-ученик-задача - преподаватель”. При этом по заданию преподавателя учащийся составляет задачу и предъявляет ее снова преподавателю. Так, в идеальном случае, ученик по требованию преподавателя составляет и решает задачу под его контролем. Но, самостоятельное, творческое составление математических задач достигается постепенным овладением всего процесса составления в ходе выполнения специальных заданий. Знания о задачах, приемах их постановки, формулировки и решения, актуализированными заданиями на составление задач, представляют собой содержание обучения составлению. Это содержание, вместе с преподаванием и учением, определяют структуру обучения составлению математических задач. Преподаватель ставит задание перед учащимися с требованием составить (полностью или частично) и решить задачу; ученик составляет и решает задачу, а саму задачу и ее решение предоставляет преподавателю для проверки с возможным последующим включением в учебно-воспитательный процесс по традиционной схеме.
В перспективе, при овладении учащимися достаточно высокого уровня в составлении математических задач, по требованию преподавателя ученик сам выбирает задачную ситуацию, составляет, решает ее, а преподаватель проверяет и осуществляет отбор для дальнейшего использования.
Васильева Елена Константиновна, преподаватель
Якутский торгово-экономический колледж потребительской кооперации, г. Якутск
,