Интеллектуальные
Для выпускников
Осенние
Зимние
Весенние
Спортивные
День рождения
Разное
Педагогика
Образование
Воспитание
Преподавание
Психология
Методики
Астрономия
Биология
География
Иностранный язык
Информатика
История
Литература
Математика
Музыка
МХК и ИЗО
ОБЖ
Русский язык
Технология
Физика
Химия
Экология
Экономика
Сайта
Педагогика
Общество
Происшествия
Все сценарии
Все статьи
Все открытые уроки
« Ноябрь 2024 » | ||||||
---|---|---|---|---|---|---|
Пн | Вт | Ср | Чт | Пт | Сб | Вс |
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 |
Какие статьи чаще добавлять? |
Учителю приходится иметь дело с топологическими понятиями. Теория таких задач громоздка. Цикл занятий начинается с изучения этимологии слова "топология". Тексты подбираются так, чтобы отобразить точку зрения ученых-гуманитариев и математиков. На уроке используются гравюры А.Т. Фоменко. Ученики формулируют определение понятия, затем знакомятся с определением в учебнике. Идет работа с листом Мёбиуса. Решается задача о четырех красках. Такие уроки способствуют успешному усвоению теории.
В истории геометрии как науки топологические проблемы появились достаточно поздно, лишь в конце 18 века. Впоследствии оказалось, что “топологические предложения, несмотря на кажущуюся их неопределенность, связаны как раз с наиболее точными абстрактными математическими предложениями о величинах; именно с алгеброй, с теорией функций комплексного переменного и с теорией групп”. В настоящее время топологические исследования являются плодотворными и затрагивают различные науки.
С топологическими понятиями школьному учителю постоянно приходится иметь дело в курсе геометрии: граничные и внутренние точки, геометрическое тело и его поверхность и так далее. Точных определений этим понятиям в школьном курсе, как правило, не дается. Даже само понятие “топология” ни разу не всплывает. Вполне возможно, что при изучении планиметрии не требуется заострять на этом внимание. Ведь, так или иначе, при изучении геометрических фигур топологические понятия проявляются в таких фразах: “Окружность – это граница круга”, “Геометрическая фигура – это часть плоскости, ограниченная последовательно соединенными отрезками” и т.п. В стереометрии же круг изучаемых геометрических фигур становится шире, уровень строгости курса повышается. В старших классах требуется более подробно обсудить встречающиеся топологические понятия. Одно из топологических понятий – понятие геометрического тела. Чтобы ввести определение геометрического тела, надо сначала определить, что такое граничная и внутренняя точка фигуры, что такое поверхность, замкнутая область.
Такая ситуация заставила на элективных курсах в девятом классе провести несколько занятий по подготовке учеников к изучению стереометрии. Трудность задачи заключалась в том, что теоретические выкладки громоздки и уровень знаний учеников не позволяет им понять теорию в полном объеме. На уроках мы пошли другим путем, решая практические задачи, по мере надобности обращаясь к формулам и теоремам.
Дворецкая Галина Зуфаровна, учитель математики
МАУО Средняя общеобразовательная школа имени В.В.Матвеева городского поселения Лесной
,